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the best-suited condition for the Pb(II) uptake 
was 0.13 g AC-4, 250 mg L-1 concentration, 
and pH 4. The Pb(II) entrapment process 
is thermodynamically exothermic and 
spontaneous. The adsorption data fit the 
Langmuir monolayer adsorption model, 
with 222 mg g-1 as maximum sorption 
capacity, and the Ho-second-order kinetics 
model suitably described the process rate.
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ABSTRACT 

In this work, activated carbons were produced by the thermochemical treatment of palm 
kernel shells with different activation time. The developed products (activated carbon 
samples) were described by their surface area, porosity, and applied for lead(II) ions separation 
from liquid phase. By prolonging the activation time beyond 2h, some of the micropores 
collapsed to form mesopores without causing a significant transformation in the surface 
area. The influences of solution pH, mass of biosorbents, concentration of Pb(II) ions, and 
temperature on the entrapment of lead(II) ions explored. Based on experimental outcome, 
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INTRODUCTION

Presence of heavy metal ions, especially lead in water bodies constitute environmental 
pollution because they are not biodegradable and highly poisonous to human and aquatic 
organisms. The discharge of industrial effluent without apposite treatment, jeopardize 
the environment and consequently public health (Krika et al., 2016). Lead extrudes into 
the environment through mining and smelting, paint and rubber industries, and battery 
manufacturing, recycling, and disposal. Content of lead in industrial effluent varied 
from one industrial activity to another, while the regulated contamination level is 0 ppm, 
according to the United States Environmental Protection Agency (EPA, 2017). Several 
separation techniques, including electrocoagulation, chemical oxidation and precipitation, 
ion-exchange, and membrane filtration, are available for separating heavy metal ions from 
liquid phase. 

The methods highlighted above are not without shortcomings. For instance, chemical 
precipitation and coagulation methods are straightforward to operate and inexpensive, but 
excessive sludge is generated, leading to disposal problem. The ion-exchange treatment 
progression is non-selective and highly depend on pH (Malik et al., 2016). Adsorption is 
the favourable and commonly adopted technique for the sequestration of heavy metals 
ions because of its eco-friendliness and simple procedure, produce limited secondary 
environmental pollution, and capable of removing low concentration heavy metal ions 
(Zuo, 2014; Tang et al., 2017). Among various solid adsorbents employed, activated carbon 
is a widely used due to its larger surface area and porosity. The use of agricultural and 
industrial wastes as starting ingredients in the manufacture of activated carbon has gained 
interest because of the high expenses associated with commercial activated carbon, coal, 
and lignite. 

One of the major exporters of products from palm oil is Malaysia. The associated waste 
products generated from the industrial milling operation of the palm oil produce such as 
trunks, mesocarp fiber, empty fruit bunches, fronds, and its shells (Poudel et al., 2017; 
Sani et al., 2015). Approximately 60 % of the resulted fibers and shells are employed as 
fuel for electricity and steam generation, out of the industrial wastes (Shafie et al., 2012). 
This scenario highlights the necessity to convert the overwhelming waste biomaterials by 
searching for new economic applications. Because of the abundance of palm kernel shells 
(PKS), the translation of PKS to activated carbon is desirable and has received substantial 
attention (Table 1) as it proven to be a viable and sustainable ingredient for the activated 
carbon (AC) preparation (Xu et al., 2017). AC can be synthesized via the physical, chemical 
activation process or combination of both physical and chemical method of activation. 
During chemical activation operation, the use of activating agents, such as ZnCl2, KOH, 
and H3PO4, is vital in altering the textural features in PKS made ACs. H3PO4 is selected 
for this study due to lower environmental and toxicological challenge (Khadiran et al., 
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2014). These chemical agents are desiccating naturally and affect the thermal denaturing 
and thwart tar formation or development during the manufacturing of the activated carbon 
(Sayğılı & Güzel 2018). 

Numerous studies, as shown in Table 1, focused on the influence of carbonization 
temperature and the activating agent on the physicochemical features of the activated 
carbon. However, studies on the effect of activation time are limited. This study aimed to 
examine the impact of activation time on the physical and chemical features of the produced 
AC, and its adsorptive performance towards Pb(II) from liquid environment. To delineate 
the PKS sourced activated carbon capability in the management of lead-bearing wastewater, 
adsorption isotherm and kinetic data were also modeled and analyzed.

Table 1
Preparation and application of palm kernel shell based activated carbon

Preparation method Application Reference
Physical steam activation Palm Oil Mill Effluent Rugayah et al. (2014)

(800°C)

Chemical activation 
(ZnCl2, 550°C)

CO2 capture Hidayu and Muda (2016)

Chemical activation
(KOH, 500-900°C)

- Andas et al. (2017)

Chemical activation
(ZnCl2, 500-550°C, 1h)

Dye removal Garcia et al. (2018)

Chemical activation
(H3PO4, 550°C, 2h)

Water treatment
(Grey water)

Razi et al. (2018)

One stage CO2 activation CO2 capture Rashidi and Yusuf (2019)

MATERIALS AND METHOD

Preparation and Characterization of ACs (Biosorbents)

The PKS was impregnated first by concentrated orthophosphoric acid at the feed ratio of 
PKS to acid (1:2) based on weight. Measured 100 g of PKS powder was introduced to 
phosphoric acid (85 % by weight) solution (120 mL) and thoroughly agitated manually. 
The impregnated samples were oven-dried for 24 hours at 110°C. Then, the impregnated 
PKS sample (10 g) was thermally activated at 600°C in a vertical tubular furnace under 
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N2 gas flow of 20 mL min-1 for predetermined duration (1 to 4 hours). The resulting AC 
cooled to room temperature, then rinsed severally with deionized H2O, until the pH of the 
filtrate is constant, filtered, and oven-dried at 110°C for 24 hours. The powder activated 
carbon (AC) produced was denoted as AC-#, where # is the activation time of 1 to 4 hour.

The ACs pore diameter, volume and surface area was determined from N2 adsorption-
desorption isotherm (Quantachrome Autosorb-1) using the Brunauer–Emmet–Teller (BET) 
and Barrett-Joyner-Halenda (BJH) method, respectively. The iodine number and Methylene 
blue number was determined using standard procedures (Nunes & Guerreiro, 2011). The 
pH drift approach was employed to determine the zero-point charge (pHpzc) of the ACs 
(Wang et al., 2009; Wang & Jian, 2013).

Batch Adsorption Experiments

The lead(II) ions stock solution was prepared by adding predetermined mass of Pb(NO3)2 
salt (Fisher Scientific, Malaysia) in 1.0 L deionized water in a volumetric flask. Prior to 
each experimental adsorption study, solution of various Pb(II) ion concentrations were 
made via dilution of the standard solution with deionized water. The adsorptive uptake 
of Pb(II) onto the activated carbon as a function of time, amount of adsorbent (0.1-0.6 
g), Pb(II) concentration (100-250 mg L-1), initial solution pH (1-5) and temperature (25-
50 °C) were investigated using batch experiment. The solution pH was varied to the 
predefined value by the dropwise addition of 1.0 M NaOH or HCl solution. In a typical 
adsorption experiment, a measured quantity of AC add into 250 mL flasks containing 
200 mL of identified concentration of Pb(II) ions. The mixture was agitated at 110 rpm 
speed using a temperature-controlled water bath shaker (Memmert, Germany) for 120 
min. At certain time intervals, an aliquot of the sample was collected and analyzed using 
an AAS spectrophotometer (Thermo Scientific-S series). All experiments were executed 
in triplicates at 25oC. The extent (%) of metal uptake and the adsorption capacity was 
determined respectively by Equations 1 and 2. 

                            			   [1]

		        	  				    [2]

C0 (mg L-1) denote initial concentration of Pb(II) ions, qt (mg g-1) and Ct (mg L-1) is the 
amount of Pb(II) adsorbed by the AC adsorbent and the Pb(II) concentration in solution at 
time t, respectively. V (L) and m (g) represent respectively the volume of metal solution, 
and weight of AC used.
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RESULTS AND DISCUSSION

Surface Characterization of Prepared AC

The percentage yield of the produced ACs at different activation time is presented in 
Table 2. The decrease in the yield of AC-1 to AC-4 is due to the increased loss of volatile 
constituents in the PKS with longer activation time.

Table 2
N2-BET surface area and porosity of PKS activated carbons prepared at different activation times

Sample Yield
(%)

Surface Area
(m2/g)

Average Pore
D(Å)

Micropore Volume 
(cm³/g)

AC-1 47.4 1059 21.631 0.6442
AC-2 44.3 1083 25.290 0.6956
AC-3 42.6 1004 22.557 0.0625
AC-4 39.8 1040 21.092 0.5551

The adsorption and desorption isotherm of N2 at -196oC of the prepared activated 
carbons is shown in Figure 1. Both AC-1 and AC-2 exhibited the typical type I isotherm 
as IUPAC classification, which suggests a predominantly microporous structure activated 
carbon. However, at prolonged activation time, the adsorption isotherm showed type IV 
isotherm and a small hysteresis loop, indicating the development of mesopores in the 
sample. Figure 2 displays the distribution of pore size of the prepared ACs, confirmed the 
change in the porosity of the ACs from microporous to micro-mesoporous with longer 
activation period. Table 2 also reveals that the surface area and the porosity of the ACs 
increase with increasing activation time up to 2h before it decreases at prolonged activation 
time. This result shows that the number of micropores increases initially, which corresponds 
to the increased surface area but then collapsed to form mesopores, bring about a shrinkage 
in the surface area of the AC. 

The amounts of micropores and mesopores of the prepared ACs can be deduced from 
iodine value and methylene blue (MB) value, respectively. Figure 3 depicts the iodine and 
MB sorption onto the PKS based activated carbon samples. The iodine and MB adsorption 
capacity increased by 15% and 10% when the activation time is prolonged from 1 to 4 h. 
This result indicates a small change in porosity with lengthier activation time, this agreed 
with the previous report of Mopoung et al. (2015). A slight reduction in iodine value at 4 
h activation time could be probably associated to the collapse of the micropores to form 
mesopores.
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Figure 1. N2 adsorption-desorption isotherm for (a) AC-1, (b) AC-2, (c) AC-3 and (d) AC-4

Figure 2. Pore size distribution of the prepared ACs
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Adsorption Performance of Activated Carbon

To select the best adsorbent, the produced ACs were screened by adsorbing Pb(II) ion in 
batch adsorption studies. Figure 4 depicts that there is insignificant variance in the Pb(II) 
ion uptake by AC-3 and AC-4. In this work, AC-4 was selected as an adsorbent for other 
experiments due to highest adsorption capacity.

Figure 5 shows the extent (in %) of Pb(II) removal and the AC-4 sorption capacity, 
as a function of adsorbent quantity. The percentage Pb(II) sequestration increased as the 
AC dose increases to 0.2 g but remained quite constant with further mass increment. 
This observation could be due to the agglomeration of adsorbent, inhibiting Pb(II) from 
attaching to the AC surface. However, the adsorption capacity (qe) presented the opposite 
trend. The decline is attributable to the growing number of vacant sites as the ratio of lead 
(II) ions to the sorption sites reduces with increasing AC doses (Amarasinghe & Williams, 
2007). Judging by both the extent of lead uptake and the amount adsorbed, the optimum 
AC weight for the separation experiment is selected as 0.13 g. 

Figure 6 illustrates the time and initial lead (II) concentration as parameters that 
influence the uptake Pb(II) by AC. The removal extent decreases as the initial concentration 
of Pb(II) ion increases, while the quantity adsorbed increases. With a fixed amount of AC, 
the number of available vacant sites is constant. At low concentration of metal ion, the 
ratio of adsorption sites to lead ion is large, leading to a high percentage of removal (Figure 
6A). However, this ratio becomes smaller at high metal concentration, ensuing into a lower 

Figure 3. Iodine and MB uptake by various AC samples
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Figure 4. Removal of Pb by activated carbon prepared at different activation time

(Condition: 50 mg L-1 of Pb(II); 0.1 g of AC, pH of solution = 4)

Figure 5. Extent of Pb(II) ion uptake and adsorption capacity of AC-4 at different adsorbent dosage. (Pb(II) 
= 50 mg L-1; Solution pH = 4)
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percentage lead removal. In the same vein, as the lead concentration increases, the driving 
power to subdue the resistance between metal ion in aqueous phase and solid sorbent 
phases becomes stronger, culminate to rise in adsorption capability. The adsorption ability 
increased rapidly up during the first 40 min contact time of the experiment as revealed in 
Figure 6B. This is associated to the handiness of a greater number of unoccupied sorption 
sites. It then gradually decreased because of repulsion forces between the attached metal 
ions and the ions present in the mixture, eventually equilibrium is attained as the solid 
surface become saturated.

Figure 6. The adsorption of various concentration of Pb(II) ions on AC-4 (Condition: 0.13 g AC-4, pH of 
solution = 4)

The pH has an essential influence on the separation of metals because it defines the 
charge on adsorbent surface, the ionization extent, and speciation of adsorbate (Mouni 
et al., 2011). The pH of point zero charge, pHpzc, of the AC-4, as estimated using the pH 
drift method, was 2.8, which implies that the biosorbent surface was charged positively at 
pH < 2.8 and negatively charged at pH higher than 2.8.  Since lead ions are well-known 
for precipitation [Pb(OH)2] at pH greater than 7, the impact of solution pH on Pb(II) ions 
entrapment onto AC-4 was examined in 1-5 pH range (Figure 7).

The quantity of lead ion adsorbed was found low in highly acidic environments (pH 
1-2) owing to existence of electrostatic revulsion between metal ions and positively charged 
AC-4 surface. Moreover, struggle for the vacant sites between the abundantly available 
H+ ions and Pb(II) ion, also propelled reduction in Pb(II) uptake. The uptake of lead ion 
is more significant at a pH range of 3 to 5, with the highest sorption capacity of 93 mg g-1 
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observed at pH 4. The enhancement of the quantity of adsorbed Pb(II) was induced by the 
electrostatic attraction between the metal ion and the AC-4 negatively charged surface. 
This phenomenon was also described by Zaini et al. (2009) in batch entrapment of lead 
unto cattle-manure-compost based AC. A decline in Pb(II) removal was witnessed at pH 
above 4, this is due to soluble hydroxide complexes formation.

 

Figure 7. Sequestration of Pb(II) on AC-4 at different pH of the Pb(II) solution (Condition: 0.13 g AC-4; 80 
mg L-1 Pb(II))
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Adsorption Isotherm, Kinetics, and Thermodynamics

To delineate the lead ions sequestration pattern, the adsorption behavior of lead on AC-4 
was explored by fitting the experimental data to the Langmuir and Freundlich adsorption 
isotherm model. The linear form of the two models is respectively, represented by Equation 
3 and 4.

						      [3]

						    
                                                                                                                                   [4]

Ce and qe represents the concentration (mg L-1) of lead ions, and the quantity (mg g-1) of 
Pb(II) ion entrapped at equilibrium. qm is the Langmuir maximum adsorption capacity (mg 
g-1). KL represents the Langmuir parameter (L mg-1) associated with the binding site affinity. 
n and KF are Freundlich constants associated with the intensity and sorption capacity, 
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respectively.  The results presented in Figure 8 and Table 3 show that the Langmuir model 
provides a well fit with a R2-value of 0.992, signifying a monolayer adsorption process. 
However, the possibility of multi-layer adsorption is not ruled out based on the R2 value 
greater than 0.8 as indicated by Table 3. 

C e
/q

e

Ln
q e

Ce Ln Ce

Figure 8. Adsorption isotherm of Pb(II) linearized according to (a) Langmuir (b) Freundlich

Table 3
Isotherm parameters for Pb(II) sequestration onto AC-4

AC-4

Langmuir isotherm Freundlich isotherm
qm (mg g-1) KL (L mg-1) R2 KF n R2

222.22 0.067 0.992 59.43 3.85 0.843

The adsorption experimental data were also fitted to proven kinetics models; pseudo-
first order (PFO), pseudo-second order (PSO), and intraparticle diffusion (IPD), to analyse 
the adsorption mechanism and estimate the reaction rate constant. The linearized form of 
the PFO and PSO kinetic models are presented, accordingly in Equations 5 and 6.

				    [5]

				               	      	 [6]
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where k1 and k2 represent the rate constant for the PFO and PSO, while qe and qt denote 
respectively the quantity of lead ions adsorbed at equilibrium and at any specified time t. The 
model constants, sorption capacities, and the correlation coefficient (R2) for the Pb(II) ion 
uptake at different concentrations, on AC-4 are presented in Table 4. According to R2 values 
and the excellent closeness of the calculated qe to the experimental qe, the adsorption data 
fitted the PSO kinetics well, indicating that the sorption process is ruled by the handiness 
of the vacant adsorption sites than the lead ion concentrations (Arshadi et al., 2014). The 
entrapment process strongly involved complexation of metal ions with the binding sites 
on AC-4. Hence, chemical adsorption is assumed the rate controlling step.

The impact of diffusion in the mechanism of lead ion uptake was analyzed employing 
the intra-particle diffusion (IPD) model, in which its linear form is defined by Equation 7.

					     [7]

kid is the intra-particle diffusion rate constant (mg g-1.min-1/2), and C is attributed to the 
boundary layer depth. The IPD model plot, Figure 9 illustrated multilinearities throughout 
the whole-time range, an indication of a multi-step sorption process. The initial first step 
is due to the entrapment of lead onto the adsorbent’s surface through boundary layer 
diffusion (Abdelwahab et al., 2013), while the subsequent adsorption step is attributed to 
the pore diffusion of metal ions into the solid adsorbent where the rate controlling step is 
IPD (Gao et al., 2013). 
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Figure 9. The IPD modeling of Pb uptake by AC-4 at varied concentrations (Initial pH = 4; ads. dosage = 0.13 g)
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Table 4 
Kinetics parameters for sequestration of lead (II) on AC-4

C0 (mg L-1) 100 150 200 250
qe, expt. ( mg g-1) 125.7 157.4 195.1 195.9

PFO
qe, calc. (mg g-1) 86.5 90.6 119.8 91.2
k1 (min-1) 0.0514 0.0450 0.0286 0.0344
R2 0.9949 0.9672 0.9925 0.9164

PSO
qe, calc. ( mg g-1) 135.1 161.3 212.8 208.3
k2 (g mg-1 min-1) 9.54 × 10-4 9.61× 10-4 3.57 × 10-4 7.68 × 10-4

R2 0.9998 0.9972 0.9985 0.9983

IPD
k1 12.49 18.13 15.10 17.35
R2 0.9966 0.9892 0.9804 0.9174
k2 2.37 3.11 6.34 1.30
R2 0.9781 0.8114 0.9758 0.9612

Adsorption thermodynamics of Pb(II) on AC-4 was study by carrying out the adsorption 
experiment at different temperatures. The thermodynamic parameters, namely Gibb’s free 
energy (∆Go), enthalpy (∆Ho) and entropy (∆So) associated with the Pb(II) uptake, were 
calculated with the aid of Equations 8-10:

∆Go = - RT In KC
                                                                                                                                    [8]

                                                                [9]

KC = Cads/Csol
                                                                                                           			   [10]

R represent the universal gas constant, KC denote the equilibrium constant, and Cads and 
Csol is the concentration of Pb(II) adsorbed on the AC-4 and present in the solution at 
equilibrium, respectively. By using van’t Hoff plot (Figure 10), the ∆Ho and ∆So can be 
estimated from the gradient and intercept of the linear graph. ∆Go, ∆Ho, and ∆So deduced are 
presented in the inset of Figure 9.  With increasing temperature, the ∆Go value became more 
negative, indicating the increase in the degree of spontaneity, attributed to the increased 



Pertanika J. Sci. & Technol. 29 (3): 1517 - 1534 (2021)1530

Ekemini Monday Isokise, Abdul Halim Abdullah and Tan Yen Ping

mobility and diffusion of the ions into the adsorbent’s pore sites. As for enthalpy, the value 
is negative and fall between 2.1 and 20 kJ mol-1, designating that uptake of lead(II) ion 
by AC-4 is a physical sorption process and exothermic (in nature). Furthermore, there is 
decline in the randomness at the AC sorbent-Pb(II) adsorbate solution interface during 
Pb(II) uptake as revealed by the negative entropy value. This is consistent with the report 
by Hannachi et al. (2019) on the separation of cadmium ions from aqueous environment 
with novel xerogel adsorbents.

y = 1166.8x - 3.971
R² = 0.9942

-0.4

-0.3

-0.2

-0.1

0
3.00E-03 3.10E-03 3.20E-03 3.30E-03 3.40E-03

Ln
 K

1/T (K-1)

Figure 10. Vant Hoff plot for Pb(II) uptake and the thermodynamic parameters

The sorption capacity of AC-4 is compared with previous work reported in the literature 
(Table 5) in evaluating the potential use of the AC derived from the palm kernel shell to 
remove Pb(II) in water. The AC-4 shows higher capacities for lead removal compared to 
activated carbons derived from other agro-wastes. The significant variation in the adsorbent 
capacity could be due to the precursor properties, the methods in the synthesis of the AC, 
and the experimental adsorption conditions used.
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CONCLUSION

Conversion of PKS to microporous AC biosorbents was successful via the chemical and 
thermal activation method. Although, extension of the activation period beyond 2 hours 
ensued in the collapse of micropores to mesopore, the surface area of the activated carbons 
was not significantly affected. The activated carbon produced after 4 hours of activation time 
(AC-4) exhibited the highest adsorption capacity towards lead metal uptake from aqueous 
solution. The suited optimum condition for the sequestration of Pb(II) was 0.13 g AC-4, 
250 mg/L Pb(II) solution, and pH 4. The entrapment of Pb(II) on AC-4, was spontaneous 
and exothermic. The adsorption fitted the Langmuir adsorption model, with a maximum 
adsorption capacity of 222 mg/g, and the pseudo-second-order kinetics model signifying 
chemisorption between biosorbents and lead molecules. The produced activated carbon is 
efficient in removing heavy metal ions in the aqueous environment and could be used as 
promising adsorbent for the removal of lead ion during wastewater and water treatment.
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